From the material to the perfect r

The material INOX

WHAT IS STAINLESS STEEL?

Stainless steel is a material group consisting of rustproof and acid-resistant steels. They are characterised above all by their corrosion resistance and durability. This makes them very easy to maintain in their further use. Synonyms for stainless steel are: high-grade steel (Inox); V2A, V4A or non-rusting steel.

PROPERTIES

The chromium content of at least 10.5 % ensures that stainless steel is resistant to acids and rust. A protective layer of chromium oxide, also called a passive layer, is the reason for the material's corrosion resistance. By increasing the chromium content and other alloying elements, the corrosion resistance can be increased.

MACHINING STAINLESS STEEL MATERIALS ECONOMICALLY. WITH HIGH-PERFORMANCE TOOLS FROM MAYKESTAG!

For generations we have been involved in the development of mainly round shank tools for high-performance machining in steel, stainless steel, special alloys and non-ferrous metals, i.e. in addition to countersinking, reaming, various rotary burrs and a wide range of special tools, our focus is on shank cutting, drilling and threading. The above-average performance of our "speed tools" can be seen here as an absolute milestone in this development.

This range includes:

- The Speedcut HPC/MTC/HSC cutter series
- The Speedtwister STC Trochoidal cutter series
- The Turbo-Twister STC Allround series
- The Speeddrill drill bit series
- The Speedtap tap series

These tools are tested and used at their limits in our "speed centre" set up especially for trials. In addition, our application engineers are ready to support you with your respective machining tasks.

APPLICATIONS

Since stainless steels do not rust, they are very versatile: Examples of their uses are:

- Medical and pharmaceutical industry
- Aerospace
- Machinery and plant construction
- Food industry

- Shipbuilding
- Chemical industry
- ArchitectureAnd much more

MACHINABILITY

A challenge for the machine operator is the wide range of stainless steels, which have one thing in common: Difficult machinability.

The stainless steel material group generally has high toughness, the tendency to edge zone hardening, very poor heat conduction and, of course, the associated unfavourable chip formation. Specially adapted tools and metal cutting strategies are of enormous importance for economical machining.

HELLO, MAY I INTRODUCE MYSELF?

I am MAYKA, your digital machining expert from MAYKESTAG and I will accompany you with my valuable tips.

The material INOX

CLASSIFICATION OF STAINLESS STEELS

Depending on the chemical composition, stainless steels are divided into four groups, which relate to the mictrostructure:

Microstructure	Main alloying elements
Ferritic	Cr
Martensitic	Cr, C or Ni
Austenitic	Cr, Ni, Mo
Austenitic / Ferritic (Duplex)	Cr ↑, Ni ↓, Mo

FERRITIC STEELS

Ferritic stainless steels consist essentially of iron and chromium. Ferritic stainless steels are mostly nickel-free and accordingly less corrosion resistant in reducing environments than grades that contain nickel. However, their corrosion resistance is sufficient for many applications.

Example: Material number: 1.4016 DIN designation: X6Cr17

in mass	fraction	% (a	ccording	to	DIN	ΕN	10088-3
С	0,08	-					
Si	1,00						
Mn	1,00						
Р	0,040						

S Cr 0,030 16.0 to 18.0

AUSTENITIC STEELS

The austenitic CrNi steels with ≥ 8 % Ni provide a particularly favourable combination of workability, mechanical properties and corrosion resistance. They are the universal materials for many applications and are therefore the most important group of stainless steels.

Example: Material number: 1.4301 DIN designation: X5CrNi 18-10 Chemical composition in mass fraction % (according to DIN EN 10088-3) 0.07 Si 1.00 Mn 2,00 Ρ 0,045 S 0.030 17,5 to 19,5 8,0 to 10,5 Ċr Ni Ν 0,10

MARTENSITIC STEELS

The biggest difference to the other groups is that, in addition to iron and chromium, they also contain carbon. This allows martensitic steels to be hardened by heat treatment. They are used wherever resistance to wear is required. However, the addition of carbon reduces the corrosion resistance.

Example:Material number: 1.4021DIN designation: X20Cr13Chemical composition in mass fraction % (according to DIN EN 10088-3)C0,16 to 0,25Si1,00Mn1,50P0,040S0,030Cr12,0 to 14,0

DUPLEX STEELS

DUPLEX steels have a two-phase structure - austenitic and ferritic. The properties are determined depending on the quantity ratio of the microstructure components.

Example:

Material number: 1.4462

DIN designation: X2CrNiMoN22-5-3

Chemical	composition in mass fraction %
С	0,03
Si	1,00
Mn	2,00
Ρ	0,035
S	0,015
Cr	21,0 to 23,0
Mo	2,5 to 3,5
Ni	4,5 to 6,5
Ν	0,10 to 0,22

Milling in stainless steel

TOOL SELECTION CRITERIA

The choice of the right tool and the machining strategy depends mainly on the type and shape of the component to be machined, and subsequently also on the machine on which it is to be produced. The following criteria influence the machining strategy:

- Machine dynamics
- Spindle power
- Spindle speed range
- Possibility of internal cooling or MQL (Minimum quantity lubrication)
- Type of programming CAM system

COOLING

The material properties such as poor heat conduction, high toughness and elongation at fracture as well as the tendency to hardening of the edge zones make sufficient and targeted cooling indispensable, and this also has a positive influence on chip removal.

MAYKAS TIP

- When using tools with internal cooling, the coolant can be introduced directly into the cutting zone.
- As cooling lubricant we recommend high-performance cutting oils or emulsion with approx. 8 % oil content.

CHIPS

The high toughness and elasticity of stainless steel materials often results in unfavourable chip formation, which makes them prone to sticking. Controlled chip breaking coupled with optimum coolant-lubricant control is crucial for chip removal.

MAYKAS TIP

- Reduced cutting speeds and increased feed rates often have a positive effect on chip formation.
- Use shank cutters with internal cooling.

TOOL HOLDER

In order to achieve optimum process security when machining stainless steel, a finely tuned clamping system is essential.

MAYKAS TIP

For both HPC roughing and trochoidal machining, we recommend holders with perfect frictional locking, such as Weldon holders or power chucks with mechanical pull-out protection!

TOOL GEOMETRY

All the shank cutter types listed are perfectly matched to stainless steel machining. The 4.0 series already includes further development steps.

Including:

- A fine grain carbide metal of the latest generation with focus on wear and temperature resistance.
- CAD-optimised cutting geometry for excellent smooth running and ease of cutting.
- An advanced coating, with high abrasive resistance and a very smooth surface structure to minimise built-up edge formation.
- Increase in stock removal rate and cutter service life.

INFLUENCING FACTORS

If increased vibrations occur in the machining process, these are usually to the detriment of the service life of the tool and also of the workpiece surface quality.

MAYKAS TIP

- Select the correct tool holder.
- Tool clamping as short as possible.
- Optimise workpiece clamping.
- Optimise cutting values in MaySpeedGuide NexGen.
- Use tools with small corner radius or corner protection chamfer.
- For machining centres: swivel the milling table for better axis load distribution (frequency shift).
- Optimise milling strategy.
- Pay attention to cooling lubricant control.

Milling in stainless steel

Speedcut 4.0

Product	Code	Ø mm	Cutting length		lcc	ins		Coating	т
1167 (Sessedant up 12	8167	1-20	3-38 long series, neck	1 45.	DIN 6535-HR	нрс	MTC	ULTRADUR	2
	8107	1-20	2,5-38 long series, neck	45 .	DIN 6535-HB	нрс	MTC	ULTRADUR	3
	8117	1-20	3-60 XL, neck	1 45.	DIN 6535-HB	нрс	٩	ULTRADUR	3
	8697	3-20	5-26 short series	1 45.	DIN 6535-HB	н₽с	٩	ULTRADUR	4
10007 (cpusedouling) 32	8397	3-16	5-22 short series, neck	1 45.	DIN 6535-HR	нрс	Q×	ULTRADUR	4
	8497	3-16	5-22 short series, neck	1 45.	DIN 6535-HB	нрс	Q×	ULTRADUR	4
assa (spaedcur an 12	8557	6-20	13-38 long series	1 45.	DIN 6535-HA	нрс	Q×	ULTRADUR	4
	8567	6-20	13-38 long series	1 45.	DIN 6535-HB	нрс	Q×	ULTRADUR	4
1247 (Speedcut all 12	8247	2-20	5-38 long series	1 45.	DIN 6535-HA	нрс	Q×	ULTRADUR	3-4
	8747	3-20	8-38 long series	1 45.	DIN 6535-HB	нрс	Q×	ULTRADUR	4
	8587	6-20	13-38 long series, neck	1 45.	DIN 6535-HR	нрс	Q×	ULTRADUR	4
	8597	6-20	13-38 long series, neck	1 45.	DIN 6535-HB	нрс	Q×	ULTRADUR	4
	8347	3-20	8–38 long series, neck	1 45.	DIN 6535-HR	нрс	Q×	ULTRADUR	4
	8447	3-20	8-38 long series, neck	45.	DIN 6535-HB	н₽с	Q×	ULTRADUR	4
18207 Speedcot no 12	8267	5-20	13-38 XL, neck	45.	DIN 6535-HR	н₽с	Q×	ULTRADUR	4
	8767	5-20	13-38 XL, neck	45 .	DIN 6535-HB	нрс	Q×	ULTRADUR	4
	8777	5-20	18-60 XL, neck	1 45.	DIN 6535-HB	н₽с		ULTRADUR	4
Berry (Spacetors and 22 and 1990)	8647	2-20	5-38 long series, neck	R	DIN 6535-HA	н₽с	Q×	ULTRADUR	3-4
8177 (Specification 12	8177	2-20	4-26 short series		01N 6535-HR	НРС		ULTRADUR	4
8187 (Epseedaut en 12	8187	2-20	4-26	G		HPC		ULTRADUR	4

Product	Code	Ø mm	Cutting length		lcc	ons		Coating	т
-7897 (Speedcut 10 - Pr	7397	3-16	5-22 short series, neck	1 45.	DIN 6535-HR	HPC	MTC	ALUNIT-S	4
	7497	3-16	5-22 short series, neck	1 45.	DIN 6535-HB	HPC	MTC	ALUNIT-S	4
- 7247 (Specialul 12	7247	2-20	5-38 long series	1 45.	DIN 6535-HR	НРС	MTC	ALUNIT-S	3-4
	7747	3-20	5-38 long series	1 45.	DIN 6535-HB	HPC	MTC	ALUNIT-S	4
17347 (Spassdaut 12.)	7347	3-20	8-38 long series, neck	1 45.	DIN 6535-HR	HPC	MTC	ALUNIT-S	4
	7447	3-20	8-38 long series, neck	1 45.	DIN 6535-HB	HPC	MTC	ALUNIT-S	4
-7267 (Operation) 10	7267	5-20	13-38 XL, neck	1 45.	DIN 6535-HR	HPC	MTC	ALUNIT-S	4
	7767	5-20	13-38 XL, neck	1 45.	DIN 6535-HB	НРС	MTC	ALUNIT-S	4
1847 filpescicut 12	6547	2-20	5-38 long series, neck	Ø,	DIN 6535-HR	нрс	MTC	ALUNIT-S	3-4

Turbo 🗪 Twister

Speedcut

Product overview

Product overview

Product overview

Product	Code	Ø mm	Cutting length	lcons		Coating	т
	8002	3-20	7-42 short series	, stc⁺	۹.	SUPRADUR	5
	8003	3-20	10-62 long series	, stc⁺	۹.	SUPRADUR	5
	8004	6-20	26-82 XL	STC ⁺	۹.	SUPRADUR	5
	8005	6-20	32-102 XXL	, STC ⁺	•	SUPRADUR	5

Speedtwister

Product Code **Cutting length** Coating Ø mm Ø, 10-62 -11111 ۹, STC 6107 ULTRADUR 5 -3-20 DIN 535-HB long series, neck 32-82 ٩× STC 6197 6-16 ULTRADUR 5 DIN 535-H XL 32-82 Q1 Z) STC -(1)-6198 6-16 ULTRADUR 5 DIN XL

Drilling in stainless steel

TOOL SELECTION CRITERIA

The selection of the right tool is influenced by the following factors:

- Drilling depth
- Cooling (IC/MQL)
- Spindle power (machining centre / turning-milling machine)
- Coolant pressure or flow rate

COOLING

As with milling, the service life of the drilling tools is significantly reduced by the known material properties of stainless steel. Therefore, sufficient cooling directly at the cutting edge is also essential here.

MAYKAS TIP

 Use drilling tools with internal cooling.
As cooling lubricant we recommend high-performance cutting oils or emulsion with approx. 8 % oil content.

CHIPS

The high toughness and elasticity of stainless steel materials means that unfavourable chip formation is also often encountered: these tend to stick and catch. Controlled chip breaking is often not possible or only possible with difficulty. Sufficient coolant pressure and cooling channel cross-section are crucial for heat and chip removal.

MAYKAS TIP

- Reduced cutting speeds and increased feed rates often have a positive effect on chip formation, as well as on heat dissipation via the chips.
- Use drill bits with stainless steel geometry and internal cooling.

TOOL HOLDER

Perfect concentricity (max. concentricity error <0.01mm) is important for process security when drilling in stainless steel materials

MAYKAS TIP

Shrink fit toolholder / Hydraulic expansion holder / Power chuck

TOOL GEOMETRY

All "blue ring" Speeddrill types are perfectly matched to stainless steel machining. The 4.0 series already includes further development steps. Including:

- A fine grain carbide metal of the latest generation with focus on wear and temperature resistance.
- A CAD optimised primary cutting edge and flute geometry with excellent spot drilling properties.
- An advanced coating, with high abrasive resistance, a very smooth surface structure to minimise built-up edge formation.
- Significant increase in economic efficiency.

FACTORS INFLUENCING DRILLING OPERATIONS

MAYKAS TIP

- Select the correct tool holder with good concentricity <0.01mm.</p>
- Optimise workpiece clamping and avoid vibrations.
- Optimise cutting values by using our MaySpeedGuide NexGen.
- Ensure sufficient coolant pressure.
- Only use sharp tools, blunt drill bits increase the hardening of the edge zones, which can lead to problems in any subsequent machining operations (reaming, threading, etc.).
- Avoid frequent chip removal, except for chip breaking.
- For drill bits >012mm, clamping via the lateral driving surface (HB/HE) provides additional safety.

Speeddrill 4.0

Product overview

Product	Code	Ø mm	Cutting length	Icons		Coating	т
	6887	3-12	20-55 short series		Q×	NANODUR	2
	6897	3-12	28-71 long series		QM	NANODUR	2

Speeddrill

Product	Code	Ø mm	Cutting length	Icons	Coating	т
1827 jäännedorilli 85	6827	2-16	20-65 short series		ALUNIT-S	2
	6837	3-12,7	28-77 long series		ALUNIT-S	2

Threads in stainless steel

TOOL SELECTION CRITERIA

The selection of the right tool is influenced by the following factors:

- Is the problem solved by tapping or thread forming?
- Thread type (blind thread / thread right through)
- Chamfer form [B / C / E]
- Thread depth

COMMON TAP CHAMFER FORMS FOR STAINLESS STEEL

B (3,5 – 5 Gg) for through hole taps with spiral point

C (2 – 3 Gg) for blind taps (standard)

FACTORS INFLUENCING CHIP FORMATION

The main factors influencing the chip cross-section are the chamfer, length and the number of flutes or hob-blade inserts. In relation to the shape of the chips, surface treatments, e.g. vaporising or coating, also play a significant role.

THREAD FORMING ADVANTAGES AND DISADVANTAGES

- Chipless process therefore large thread depths possible.
- Higher cutting speeds possible therefore shorter machining times.
- Cold forming gives better surface quality.
- + Higher pull-out resistance.
- Longer service lives in materials that are easy to form, such as stainless steel.
- Higher torque required.
- Incompletely formed thread core: due to the resulting indentation, cleaning is difficult, therefore not suitable for medical technology or food industry and automatic assembly systems.
- Tighter core hole tolerances required for optimal thread forming.

TOOL HOLDER

The collet chuck in combination with a suitable square collet, often with minimum length compensation, can be described as standard.

MAYKAS TIP

When using highly twisted tools, we recommend rigid clamping without length compensation to avoid overlapping of the thread.

COOLING

Precise and efficient cooling is required especially for thread cutting in stainless steel. The oil content should be at least 5-6 % for tapping, whereas thread forming places significantly higher demands on the cooling lubricant. Oil content at least 8-10 %.

MAYKAS TIP

When thread forming, make sure that the cutting oil is suitable for thread forming, in other words cold forming.

Use taps and formers with internal cooling.

FACTORS INFLUENCING THREAD MACHINING

- Core hole drilling: This should be carried out precisely. Always use solid carbide drill bits with internal cooling (see Drilling).
- **Coating:** A coating with a low coefficient of friction helps towards optimum chip removal and at the same time counteracts built-up edge formation. In addition, the service life is significantly extended. Our TiN and TiCN coatings are particularly well suited for stainless steel materials.
- **Tolerances:** Due to the heat generated during thread production, sticking may occur. We therefore recommend "X" tolerances (HX, GX) for stainless steel materials.
- Cutting speed: a recommendation is good, but fine-tuning on the machine is best, as the cutting speed is very important for the chip pattern. This prevents chip wraps, which can obstruct the coolant and quickly lead to tool breakage.

MAYKAS TIP

For deep threads (>2.5xD) it is advisable to cut the thread in two steps. Caution: only possible with synchronous spindle and rigid tension.

Threads in stainless steel

Speedtap 4.0

Product overview

Product	Code	Ø	Tapper lead form		lcc	ons		Coating	т
still jäpsesitepise M10	4618	M6-M20	8 35-5P	м	HSS E/PM	БНХ		HARDDUR	3-4
and jBpasedteprorM10	4608	M2-M30	8 35-5P	м	HSS E/PM	БНХ		HARDDUR	3-4
and jOppenditepene M10	4628	M3-M20	B 35-5P	м	HSS E/PM	6GX		HARDDUR	3
addt jäpensänpan MLO	4648	M6-M20	2-39	м	HSS E/PM	БНХ	ľ	HARDDUR	3-4
and the jill passed to page 1410	4638	M2-M30	2-3P	м	HSS E/PM	БНХ	ľ	HARDDUR	3-4
adda filipmecitopso M10	4668	M3-M20	E 15-2 P	м	HSS E/PM	БНХ	ľ	HARDDUR	3-4
addit filpmentuppen M10	4658	M3-M20	2-3P	м	HSS E/PM	6GX	ľ	HARDDUR	3-4
.seea japeedtopse.MF10	4609	MF8-MF20	8 35-5P	MF	HSS E/PM	БНХ		HARDDUR	3-4
4618 jõpeedispae MF10	4619	MF8-MF20	2-3P	MF	HSS E/PM	БНХ	Y	HARDDUR	3-5
4022 jūpeediap.vo 61/8	4772	G1/8-G1	8 35-5P	G	HSS E/PM			HARDDUR	3-4
4282 jügeedtep so 01/0	4782	G1/8-G1	2-3P	G	HSS E/PM		ľ	HARDDUR	3-5

Speedtap

Product overview

Product	Code	Ø	Tapper lead form		lc	ons	Coating	т
4666-JSpeedtep M10	4625/4635	M6-M20	B 35-5P	м	HSS E/PM 55	БНХ	HARDDUR	3-4
Size [Speedlep M10	4605/4615	M2-M30	35-5P	м	HSS E/PM 55	БНХ	HARDDUR	3-4
And J Epsending: M10	4686/4696	M3-M20	35-5P	м	HSS E/PM 55	ISO 2 6H	TiCN	3
atilit j Bpsedtepso M10	4629/4639	M3-M20	3.5-5P	м	HSS E/PM 55	6GX	HARDDUR	3
idel Jäpendopao Mil	4685/4695	M6-M20	2-3P	м	HSS E/PM 55	внх	HARDDUR	3-4
state (Bensettep so M10	4665/4675	M2-M30	2-3P	м	HSS E/PM 55	внх	HARDDUR	3-4

Speedtap

Product	Code	Ø	Tapper lead form		lco	ons		Coating	т
4006 jõpeeditep M10	4606/4616	M3-M20	E 15-2 P	м	HSS E/PM 55	БНХ	Y	HARDDUR	3-4
1992 jäpensitep M10	4627/4637	M6-M30	2-3P	М	HSS E/PM 55	ISO 2 6H	Y	TICN	3-4
visit (Spares)top M10-	4649/4659	M3-M30	2-3P	М	HSS E/PM 55	ISO 2 6H	Y	TICN	3-4
1680 jäpeesitap M10	4626/4636	M3-M20	2-3P	М	HSS E/PM 55	6GX	¥	HARDDUR	3-4
Jacob (Gpaneditap: M10	4602	M2-M12	8 35-5P	м	HSS E/V3	ISO 2 6H		VAPO	2-3
Jasza jCpressitage M10	4622	M3-M10	8 35-5P	м	HSS E/V3	ISO 2 6H		TiN	3
Auto-jüpeeditap M10	4642	M3-M10	8 35-5P	М	HSS E/V3	ISO 2 6H		TICN	3
unité júppeeditep M10	4612	M3-M36	8 35-5P	М	HSS E/V3	ISO 2 6H		VAPO	3-4
wee (Speedtep MiD	4632	M4-M30	8 35-5P	М	HSS E/V3	ISO 2 6H		TiN	3-4
4550 (Gpneditep M12	4652	M12-M36	8 35-5P	м	HSS E/V3	ISO 2 6H		TICN	3-4
ASSE (Spanedlags M10	4662/4672	M2-M20	8 35-5P	м	HSS E/V3	ISO 3 6G		VAPO	2-3
4892 jūgasediop M10	4647	M2-M12	2-3P	м	HSS E/V3	ISO 2 6H	¥	VAPO	2-4
- 1600 jiipmediap M10-	4604	M3-M10	2-3P	М	HSS E/V3	ISO 2 6H	¥	TiN	3
1020 jCpresitop M10	4624	M3-M10	2-3P	М	HSS E/V3	ISO 2 6H	¥	TICN	3
ne67 jGpmeultep M10	4657	M3-M36	2-3P	М	HSS E/V3	ISD 2 6H	Y	VAPO	3-5
-sus-jüpeesitep M10	4614	M3-M20	2-3P	м	HSS E/V3	ISO 2 6H	¥	TiN	3-4
ssou jūpeesitep Mi2	4634	M12-M36	2-3P	М	HSS E/V3	ISO 2 6H	¥	TICN	4-5
- 600. jSpeedlag M10	4646/4656	M4-M20	2-3P	м	HSS E/V3	ISO 2 6H	¥	VAPO	3-4
4692 jGpeedtop M10	4687/4697	M2-M30	2-3P	м	HSS E/V3	ISO 3 6G	¥	VAPO	2-5
4769 (Gpeedkop MF10	4753	MF8-MF20	B 35-5P	MF	HSS E/PM 55	БНХ		HARDDUR	3-4

Threads in stainless steel

Speedtap

Product overview

Product	Code	Ø	Tapper lead form		lc	ons		Coating	т
4086 (Epseedlep MF10	4763	MF8-MF20	2-3P	MF	HSS E/PM 55	БНХ		HARDDUR	3-5
4780 /Gpsedtap MF10	4723	MF3-MF24	B 25-55P	MF	HSS E/V3	ISO 2 6H		VAPO	3
1920 jäpeediap MF10	4733	MF3-MF30	2-3P	MF	HSS E/V3	ISO 2 6H	ť	VAPO	3-5
ana jūpeedtep 61/8	4742	G1/8-G1	3.5-5P	G	HSS E/PM 55			HARDDUR	3-4
azie Jäpendtep Gij8	4752	G1/8-G1	2-3P	G	HSS E/PM 55		Y	HARDDUR	3-5
4026- Jüpenottep G1/8	4722	G1/8-G1	3.5-5P	G	HSS E/V3			VAPO	3-4
4730-jGpaedtap-61/0	4732	G1/8-G1 1/2	2-3P	G	HSS E/V3		Y	VAPO	4-6

Machine taps

Product overview

Product	Code	Ø	Tapper lead form		lc	ons	Coating	т
etter may/astes M10	4801/4806	M3-M24	8 35-5P	м	HSS Co5	ISO 2 6H	TiN	2
-071 maylestag M10	4971/4976	M3-M30	2-3P	М	HSS Co5	ISO 2 6H	TiN	2

Speedtap Rolling taps

Product

-4670 J

4783)

	Code	Ø	Tapper lead form		lcc	ins		Coating	т
Speedtap M10	4678/4688	M6-M16	2-3 P	м	HSS-E	БНХ		TiN	5-7
Speedtap M10	4644/4654	M2-M16	2-3P	м	HSS-E	БНХ	đư	TiN	3-7
Speeckep ME10	4783	MF3-MF16	2-3P	MF	HSS-E	БНХ	ÛÛ	TiN	3-6

Technical information

Coating	Layer	Colour	Preferably workable materials	Typical machining
ULTRADUR	Multiple-layer	Dark gray	Especially for stainless steels and high-strength materials	Milling
ALUNIT-S	Single-layer	Dark gray	Universal, for general steels, castings	Universal
SUPRADUR	Multiple-layer	Light gray	Universal, for tool steel, stainless steel, heat-resistant steels, titanium, cast iron, hard machining <52 HRC	Milling
NANODUR	Single-layer	Dark gray	Especially for stainless steels	Drilling
HARDDUR	Single-layer	Dark gray	Universal applications, difficult to machine materials	Tapping
TICN	Single-layer	Blue gray	High and low-alloy steels, structural steels, high-strength materials, cast iron	Tapping
VAPO	_	Dark gray	Soft, ductile (tough) materials	Tapping
TiN	Single-layer	Golden yellow	Universal usable layer	Universal

Signs and symbols

lcon	Explanation	lcon	Explanation
STC	Speed Trochoidal Cutting	Q×	Very high cutting volume
sтс⁺	STC with a longer tool life	1 45.	Corner version
НРС	High Performance Cutting	axd	Drilling depth
н₽с	HPC with a longer tool life	DIN 6535-HB	Shank form
мтс	Multi Task Cutting	м	Thread type
HSS-E	HSS with increased resistance to wear	ISO 2 6H	Thread tolerance
HSS Co5	5% cobalt-alloyed high speed steel	8 35-5P	Taper lead form, taps
HSS E/V3	Powder-metallurgical manufactured high speed steel with 3% vanadium		Through hole
HSS E/PM 55	HSS PM steel with 5% vanadium and 5% cobalt		Blind hole

Specialtools

NO REQUIREMENT IS TOO PARTICULAR

We produce special tools specifically according to your requirements. Whichever high-tech solution is the right one – we develop it. Fast, reliable and competitive.

THE HIGH-TECH SOLUTION FOR YOUR SPECIAL APPLICATIONS

MaySpeedGuide

THE "NEXT GENERATION" OF CUTTING VALUE CALCULATION

Quick, simple, and precise. The "MaySpeedGuide NexGen" cutting values app provides you with an exact calculation of cutting data for a wide range of machining operations in the field of milling, drilling and threading.

New features such as the machining calculator and 3D data in DXF or STEP format make your work easier and take you quickly and easily to your goal.

Toolservice

REGRINDING AND RECOATING

Perfect grinding service, precisely tailored to requirements. Quality and innovation therefore means: we are guided by you.

ORIGINAL REGRINDING PROCESS ON THE LATEST GRINDING MACHINES

The full capability of your tools is ensured by the original regrinding process. We take the utmost care to test and prepare your tools in their original geometry. All in 100 % manufacturer quality on our original production machines.

ORIGINAL COATING

The MAYKESTAG coating process ensures a longer service life and higher performance. The utmost performance and speed.

YOUR RECONDITIONED TOOL WITH 100% CUTTING PERFORMANCE

Contact: toolservice@a-mk.com

With the compliments of

ÖSTERREICH ALPEN-MAYKESTAG GmbH

Urstein Nord 67 | A-5412 Puch / Salzburg Tel: +43 [0] 662 449 01-0 Fax: +43 [0] 662 449 01-110 Fax Export: +43 [0] 662 449 01-130 verkauf@a-mk.com export@a-mk.com

DEUTSCHLAND ALPEN-MAYKESTAG GmbH

Hansaallee 201 | D-40549 Dússeldorf Tel: +49 (0) 211 53 75 50-0 Fax: +49 (0) 211 59 35 73 verkauf@a-mk.com

ITALIA ALPEN-MAYKESTAG s.r.l.

Via Volontari Del Sangue 54 | I-20093 Cologno Monzese (MI) Tel: +39 (02) 48 84 30 38 Fax: +39 (02) 45 70 14 19 info@a-mk.it

ČESKÁ REPUBLIKA ALPEN-MAYKESTAG s.r.o.

U Koruny 414 | CZ-50002 Hradec Králové Tel. +420 495 58 23 22 Fax +420 495 58 23 25 info@a-mk.cz

MAGYARORSZÁG Alpen-Maykestag kft.

Gyár utca 5 | H-8500 Pápa Tel. +36 (0) 8951 15 15 Fax +36 (0) 8951 15 16 info@a-mk.hu

